Trick Candles

One of the common things when you go to birthday parties is candles. Candles in cupcakes, brownies, cookies, ice-cream cake, just about any dessert you can think of. But no matter what medium the candle is in, on must beware of the dreaded TRICK CANDLE!

That’s right! The candles that never go out. But how do they work? And why on earth would someone create them?

Usually, when you blow out a candle, you see or smell smoke, and if you watch closely, there are still embers left over that glow red-hot. My friend Lindsey’s post summarizes it well. She writes, “To explain trick candles, let me explain regular candles first. After you blow out a regular candle, little smoke comes off the wick, and this is vaporized paraffin. Paraffin in vaporized paraffin is candle wax.” Now, if you haven’t already read my post on candles, click here to learn more! The embers left after the candle is blown out is hot enough to vaporize paraffin, but not to light it up again. However, in a trick candle, that’s exactly what you need to do. The key is to add something to the candle to make it continuously light up, even when blown out.

The most common “key” used is magnesium, as it is a metal, making a good conductor that can burn. One article states, “Inside the burning wick, the magnesium is shielded from oxygen and cooled by liquid paraffin, but once the flame goes out magnesium dust is ignited by the ember. If you watch the ember you will see tiny flecks of magnesium going off. One of them produces the heat necessary to re-light the paraffin vapor, and the candle flame comes back to life!” In other words, the magnesium is protected and cooled, but is vulnerable after the candle goes out, allowing it to be the “lighter” of the new flame, and so on and so forth.

Trick candles are cool, but some people may not like them. Then again, you can use it as a prank for your annoying older sister…

Links:

http://science.howstuffworks.com/innovation/science-questions/question420.htm

http://chemistry2013-14.tumblr.com/post/67269673550/relating-it-back-to-chemistry-trick-candles

So ta ta for now and I hope to see your chemical reaction soon!